A comparison of stimulus types in online classification of the P300 speller using language models
نویسندگان
چکیده
The P300 Speller is a common brain-computer interface communication system. There are many parallel lines of research underway to overcome the system's low signal to noise ratio and thereby improve performance, including using famous face stimuli and integrating language information into the classifier. While both have been shown separately to provide significant improvements, the two methods have not yet been implemented together to demonstrate that the improvements are complimentary. The goal of this study is therefore twofold. First, we aim to compare the famous faces stimulus paradigm with an existing alternative stimulus paradigm currently used in commercial systems (i.e., character inversion). Second, we test these methods with language model integration to assess whether different optimization approaches can be combined to further improve BCI communication. In offline analysis using a previously published particle filter method, famous faces stimuli yielded superior results to both standard and inverting stimuli. In online trials using the particle filter method, all 10 subjects achieved a higher selection rate when using the famous faces flashing paradigm than when using inverting flashes. The improvements achieved by these methods are therefore complementary and a combination yields superior results to either method implemented individually when tested in healthy subjects.
منابع مشابه
سنجش عملکرد سامانههای رابط مغز و رایانه P300 Speller بهازای ماتریس نمایش ردیف و یا ستون (RCP) و نمایش حروف زبان فارسی
As a Brain computer interface system, BCI P300 Speller tries to help disabled people and patients to regain some of their lost ability with allowing communication via typing. The ability of personalization is one of the most important features in a BCI system, so the typing language as a personalization factor is an important feature in a BCI speller. Most prior researches on P300 Speller has f...
متن کاملEliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI
BACKGROUND Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) generate weak SSVEP with a monitor and cannot use harmonic frequencies, whereas P300-based BCIs need multiple stimulation sequences. These issues can decrease the information transfer rate (ITR). NEW METHOD In this paper, we introduce a novel hybrid SSVEP-P300 speller that generates dual-frequency S...
متن کاملThe effects of stimulus timing features on P300 speller performance.
OBJECTIVE Despite numerous examinations of factors affecting P300 speller performance, the impact of stimulus presentation parameters remains incompletely understood. This study examines the effects of four distinct stimulus presentation parameters (stimulus-off time [ISI(∗)], interstimulus interval [ISI], flash duration, and flash-duration:ISI ratio) on the accuracy and efficiency of the P300 ...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملNew Methods for the P300 Visual Speller
Brain-Computer Interfaces (BCI ’s) enable us to infer intentional control signals from brain activity. The Visual Speller is a BCI based on event related potentials (ERP ’s) in the electroencephalogram, such as the P300 (a positive deflection in the EEG about 300 ms after a rarely occuring stimulus). In the classical paradigm one trial (i.e. prediction of one symbol) consists of successive high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017